Properties

Label 4.14912.6t13.a.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $14912$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(14912\)\(\medspace = 2^{6} \cdot 233 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.59648.1
Galois orbit size: $1$
Smallest permutation container: $C_3^2:D_4$
Parity: even
Determinant: 1.233.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.0.59648.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 2x^{3} - 2x^{2} + 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: \( x^{2} + 33x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 + 16\cdot 37 + 18\cdot 37^{2} + 14\cdot 37^{3} + 29\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 + 8\cdot 37 + 22\cdot 37^{2} + 11\cdot 37^{3} + 26\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 a + 15 + \left(5 a + 25\right)\cdot 37 + \left(26 a + 18\right)\cdot 37^{2} + \left(10 a + 13\right)\cdot 37^{3} + \left(26 a + 10\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 27 a + 1 + \left(9 a + 10\right)\cdot 37 + \left(27 a + 28\right)\cdot 37^{2} + \left(12 a + 8\right)\cdot 37^{3} + \left(36 a + 33\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 19 a + 13 + \left(31 a + 29\right)\cdot 37 + \left(10 a + 6\right)\cdot 37^{2} + \left(26 a + 30\right)\cdot 37^{3} + \left(10 a + 30\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 10 a + 35 + \left(27 a + 21\right)\cdot 37 + \left(9 a + 16\right)\cdot 37^{2} + \left(24 a + 32\right)\cdot 37^{3} + 17\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,2)(3,4)(5,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(3,5)$$2$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,3,5)$$1$
$4$$3$$(1,3,5)(2,4,6)$$-2$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,4,3,6,5,2)$$0$
$12$$6$$(2,4,6)(3,5)$$-1$

The blue line marks the conjugacy class containing complex conjugation.