Basic invariants
Dimension: | $4$ |
Group: | $C_3^2:D_4$ |
Conductor: | \(14832\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 103 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.0.44496.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $C_3^2:D_4$ |
Parity: | even |
Determinant: | 1.412.2t1.a.a |
Projective image: | $\SOPlus(4,2)$ |
Projective stem field: | Galois closure of 6.0.44496.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{5} + x^{4} - 2x^{3} + x^{2} + 3x + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 24 a + 1 + \left(19 a + 21\right)\cdot 31 + \left(25 a + 16\right)\cdot 31^{2} + \left(3 a + 12\right)\cdot 31^{3} + \left(8 a + 21\right)\cdot 31^{4} +O(31^{5})\)
$r_{ 2 }$ |
$=$ |
\( 7 a + 18 + \left(11 a + 5\right)\cdot 31 + \left(5 a + 17\right)\cdot 31^{2} + \left(27 a + 25\right)\cdot 31^{3} + \left(22 a + 2\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 30 a + 7 + \left(28 a + 10\right)\cdot 31 + \left(20 a + 27\right)\cdot 31^{2} + \left(15 a + 4\right)\cdot 31^{3} + \left(22 a + 3\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 4 }$ |
$=$ |
\( a + 5 + \left(2 a + 7\right)\cdot 31 + \left(10 a + 9\right)\cdot 31^{2} + \left(15 a + 15\right)\cdot 31^{3} + \left(8 a + 1\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 5 }$ |
$=$ |
\( 14 + 30\cdot 31 + 2\cdot 31^{3} + 8\cdot 31^{4} +O(31^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 18 + 18\cdot 31 + 21\cdot 31^{2} + 31^{3} + 25\cdot 31^{4} +O(31^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $4$ |
$6$ | $2$ | $(1,3)(2,4)(5,6)$ | $0$ |
$6$ | $2$ | $(2,6)$ | $2$ |
$9$ | $2$ | $(2,6)(4,5)$ | $0$ |
$4$ | $3$ | $(1,2,6)(3,4,5)$ | $-2$ |
$4$ | $3$ | $(1,2,6)$ | $1$ |
$18$ | $4$ | $(1,3)(2,5,6,4)$ | $0$ |
$12$ | $6$ | $(1,4,2,5,6,3)$ | $0$ |
$12$ | $6$ | $(2,6)(3,4,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.