Properties

Label 4.14764742975.12t34.b.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $14764742975$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(14764742975\)\(\medspace = 5^{2} \cdot 839^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.2952948595.2
Galois orbit size: $1$
Smallest permutation container: 12T34
Parity: odd
Determinant: 1.839.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.0.2952948595.2

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 9x^{4} - 19x^{3} + 27x^{2} - 44x + 240 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 18 + 9\cdot 19 + 11\cdot 19^{2} + 5\cdot 19^{3} + 4\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 13 a + 7 + \left(5 a + 9\right)\cdot 19 + \left(8 a + 14\right)\cdot 19^{2} + \left(14 a + 6\right)\cdot 19^{3} + \left(8 a + 12\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 12 + 7\cdot 19 + 6\cdot 19^{2} + 18\cdot 19^{3} + 18\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 12 a + 14 + \left(7 a + 6\right)\cdot 19 + \left(9 a + 12\right)\cdot 19^{2} + \left(a + 10\right)\cdot 19^{3} + \left(7 a + 4\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 a + 1 + \left(13 a + 2\right)\cdot 19 + \left(10 a + 17\right)\cdot 19^{2} + \left(4 a + 12\right)\cdot 19^{3} + \left(10 a + 6\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 a + 7 + \left(11 a + 2\right)\cdot 19 + \left(9 a + 14\right)\cdot 19^{2} + \left(17 a + 2\right)\cdot 19^{3} + \left(11 a + 10\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$-2$
$6$$2$$(2,3)$$0$
$9$$2$$(1,4)(2,3)$$0$
$4$$3$$(1,4,6)(2,3,5)$$1$
$4$$3$$(1,4,6)$$-2$
$18$$4$$(1,2,4,3)(5,6)$$0$
$12$$6$$(1,3,4,5,6,2)$$1$
$12$$6$$(1,4,6)(2,3)$$0$