Properties

Label 4.1423e2.8t23.2c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 1423^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$2024929= 1423^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + 4 x^{6} - 3 x^{5} - x^{4} - 11 x^{3} - 10 x^{2} - 9 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 17 + \left(a + 20\right)\cdot 29 + \left(4 a + 3\right)\cdot 29^{2} + \left(11 a + 27\right)\cdot 29^{3} + \left(10 a + 5\right)\cdot 29^{4} + \left(4 a + 4\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 4 + 26\cdot 29 + 20\cdot 29^{2} + 18\cdot 29^{3} + 23\cdot 29^{4} + 18\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 25 a + \left(15 a + 2\right)\cdot 29 + \left(11 a + 26\right)\cdot 29^{2} + \left(23 a + 22\right)\cdot 29^{3} + \left(6 a + 13\right)\cdot 29^{4} + \left(8 a + 3\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 5 + \left(27 a + 13\right)\cdot 29 + \left(24 a + 22\right)\cdot 29^{2} + \left(17 a + 20\right)\cdot 29^{3} + \left(18 a + 17\right)\cdot 29^{4} + \left(24 a + 15\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 9 + \left(13 a + 27\right)\cdot 29 + \left(17 a + 9\right)\cdot 29^{2} + \left(5 a + 12\right)\cdot 29^{3} + \left(22 a + 24\right)\cdot 29^{4} + \left(20 a + 8\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 20 a\cdot 29 + \left(24 a + 13\right)\cdot 29^{2} + \left(25 a + 28\right)\cdot 29^{3} + \left(4 a + 27\right)\cdot 29^{4} + \left(23 a + 22\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 9 a + 13 + \left(8 a + 25\right)\cdot 29 + \left(4 a + 28\right)\cdot 29^{2} + \left(3 a + 16\right)\cdot 29^{3} + \left(24 a + 26\right)\cdot 29^{4} + \left(5 a + 17\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 11 + 29 + 20\cdot 29^{2} + 26\cdot 29^{3} + 4\cdot 29^{4} + 24\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,5,3)(2,7,8,6)$
$(1,5)(2,8)(3,4)(6,7)$
$(1,2)(3,4)(5,8)$
$(1,4,8)(2,5,3)$
$(1,6,5,7)(2,4,8,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,8)(3,4)(6,7)$$-4$
$12$$2$$(1,2)(3,4)(5,8)$$0$
$8$$3$$(1,3,7)(4,6,5)$$1$
$6$$4$$(1,6,5,7)(2,4,8,3)$$0$
$8$$6$$(1,6,3,5,7,4)(2,8)$$-1$
$6$$8$$(1,4,2,6,5,3,8,7)$$0$
$6$$8$$(1,3,2,7,5,4,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.