Properties

Label 4.13e2_31e4.5t4.1
Dimension 4
Group $A_5$
Conductor $ 13^{2} \cdot 31^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$156075049= 13^{2} \cdot 31^{4} $
Artin number field: Splitting field of $f= x^{5} - 31 x^{2} + 31 x + 31 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 467 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 57 + 167\cdot 467 + 58\cdot 467^{2} + 389\cdot 467^{3} + 407\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 272 + 204\cdot 467 + 155\cdot 467^{2} + 14\cdot 467^{3} + 376\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 308 + 20\cdot 467 + 320\cdot 467^{2} + 154\cdot 467^{3} + 164\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 318 + 174\cdot 467 + 217\cdot 467^{2} + 306\cdot 467^{3} + 317\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 446 + 366\cdot 467 + 182\cdot 467^{2} + 69\cdot 467^{3} + 135\cdot 467^{4} +O\left(467^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.