Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 101 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 + 93\cdot 101 + 20\cdot 101^{2} + 88\cdot 101^{3} + 54\cdot 101^{4} + 22\cdot 101^{5} +O\left(101^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 27 + 64\cdot 101 + 94\cdot 101^{2} + 65\cdot 101^{3} + 7\cdot 101^{4} + 99\cdot 101^{5} +O\left(101^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 38 + 19\cdot 101 + 82\cdot 101^{2} + 57\cdot 101^{3} + 65\cdot 101^{4} + 52\cdot 101^{5} +O\left(101^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 76 + 44\cdot 101 + 71\cdot 101^{2} + 29\cdot 101^{3} + 40\cdot 101^{4} + 87\cdot 101^{5} +O\left(101^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 84 + 27\cdot 101 + 29\cdot 101^{2} + 56\cdot 101^{3} + 3\cdot 101^{4} + 15\cdot 101^{5} +O\left(101^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 86 + 16\cdot 101 + 57\cdot 101^{2} + 92\cdot 101^{3} + 34\cdot 101^{4} + 65\cdot 101^{5} +O\left(101^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 93 + 27\cdot 101 + 11\cdot 101^{2} + 47\cdot 101^{3} + 59\cdot 101^{4} + 3\cdot 101^{5} +O\left(101^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 97 + 8\cdot 101 + 37\cdot 101^{2} + 67\cdot 101^{3} + 36\cdot 101^{4} + 58\cdot 101^{5} +O\left(101^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,5)(2,6)$ |
| $(1,2)(3,8)(4,7)(5,6)$ |
| $(1,2)(3,4)(5,6)(7,8)$ |
| $(1,7,2,8)(3,6,4,5)$ |
| $(1,8,5,4)(2,3,6,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,5)(2,6)(3,7)(4,8)$ | $-4$ |
| $2$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $2$ | $2$ | $(1,2)(3,8)(4,7)(5,6)$ | $0$ |
| $2$ | $2$ | $(1,5)(2,6)$ | $0$ |
| $4$ | $2$ | $(1,3)(2,8)(4,6)(5,7)$ | $0$ |
| $4$ | $4$ | $(1,7,2,8)(3,6,4,5)$ | $0$ |
| $4$ | $4$ | $(1,8,2,7)(3,5,4,6)$ | $0$ |
| $4$ | $4$ | $(1,4,5,8)(2,7,6,3)$ | $0$ |
| $4$ | $4$ | $(1,2,5,6)(3,7)$ | $0$ |
| $4$ | $4$ | $(1,6,5,2)(3,7)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.