Properties

Label 4.13_491e3.8t44.1c1
Dimension 4
Group $C_2 \wr S_4$
Conductor $ 13 \cdot 491^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr S_4$
Conductor:$1538820023= 13 \cdot 491^{3} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} - 2 x^{5} + 3 x^{4} - 2 x^{3} + x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr S_4$
Parity: Odd
Determinant: 1.13_491.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 23.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 29 a + 42 + \left(38 a + 8\right)\cdot 47 + \left(14 a + 2\right)\cdot 47^{2} + \left(28 a + 17\right)\cdot 47^{3} + \left(12 a + 33\right)\cdot 47^{4} + \left(2 a + 17\right)\cdot 47^{5} + \left(5 a + 34\right)\cdot 47^{6} + \left(24 a + 43\right)\cdot 47^{7} + \left(23 a + 28\right)\cdot 47^{8} + 37\cdot 47^{9} + \left(32 a + 11\right)\cdot 47^{10} + \left(3 a + 7\right)\cdot 47^{11} + \left(23 a + 31\right)\cdot 47^{12} + \left(30 a + 20\right)\cdot 47^{13} + \left(26 a + 19\right)\cdot 47^{14} + 11\cdot 47^{15} + \left(44 a + 20\right)\cdot 47^{16} + \left(39 a + 26\right)\cdot 47^{17} + \left(30 a + 21\right)\cdot 47^{18} + \left(38 a + 17\right)\cdot 47^{19} + \left(12 a + 22\right)\cdot 47^{20} + \left(22 a + 27\right)\cdot 47^{21} + \left(26 a + 13\right)\cdot 47^{22} +O\left(47^{ 23 }\right)$
$r_{ 2 }$ $=$ $ 41 + 44\cdot 47 + 22\cdot 47^{2} + 8\cdot 47^{3} + 6\cdot 47^{4} + 31\cdot 47^{5} + 30\cdot 47^{6} + 6\cdot 47^{7} + 9\cdot 47^{8} + 15\cdot 47^{9} + 10\cdot 47^{10} + 33\cdot 47^{11} + 44\cdot 47^{12} + 3\cdot 47^{13} + 34\cdot 47^{14} + 29\cdot 47^{15} + 17\cdot 47^{16} + 5\cdot 47^{17} + 7\cdot 47^{18} + 29\cdot 47^{19} + 32\cdot 47^{20} + 28\cdot 47^{21} + 16\cdot 47^{22} +O\left(47^{ 23 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 6 + \left(8 a + 10\right)\cdot 47 + \left(32 a + 40\right)\cdot 47^{2} + \left(18 a + 11\right)\cdot 47^{3} + \left(34 a + 30\right)\cdot 47^{4} + \left(44 a + 9\right)\cdot 47^{5} + \left(41 a + 42\right)\cdot 47^{6} + \left(22 a + 39\right)\cdot 47^{7} + \left(23 a + 4\right)\cdot 47^{8} + \left(46 a + 15\right)\cdot 47^{9} + \left(14 a + 28\right)\cdot 47^{10} + \left(43 a + 29\right)\cdot 47^{11} + \left(23 a + 26\right)\cdot 47^{12} + \left(16 a + 11\right)\cdot 47^{13} + \left(20 a + 42\right)\cdot 47^{14} + \left(46 a + 32\right)\cdot 47^{15} + \left(2 a + 13\right)\cdot 47^{16} + \left(7 a + 15\right)\cdot 47^{17} + \left(16 a + 43\right)\cdot 47^{18} + \left(8 a + 16\right)\cdot 47^{19} + \left(34 a + 9\right)\cdot 47^{20} + \left(24 a + 12\right)\cdot 47^{21} + \left(20 a + 44\right)\cdot 47^{22} +O\left(47^{ 23 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 1 + \left(41 a + 37\right)\cdot 47 + \left(31 a + 44\right)\cdot 47^{2} + \left(42 a + 20\right)\cdot 47^{3} + \left(32 a + 8\right)\cdot 47^{4} + \left(23 a + 33\right)\cdot 47^{5} + \left(46 a + 43\right)\cdot 47^{6} + \left(41 a + 9\right)\cdot 47^{7} + \left(21 a + 46\right)\cdot 47^{8} + \left(46 a + 34\right)\cdot 47^{9} + \left(26 a + 12\right)\cdot 47^{10} + \left(26 a + 29\right)\cdot 47^{11} + \left(45 a + 28\right)\cdot 47^{12} + \left(8 a + 1\right)\cdot 47^{13} + \left(21 a + 13\right)\cdot 47^{14} + \left(3 a + 35\right)\cdot 47^{15} + \left(26 a + 26\right)\cdot 47^{16} + \left(46 a + 5\right)\cdot 47^{17} + \left(14 a + 29\right)\cdot 47^{18} + \left(22 a + 37\right)\cdot 47^{19} + \left(34 a + 33\right)\cdot 47^{20} + \left(42 a + 3\right)\cdot 47^{21} + \left(5 a + 41\right)\cdot 47^{22} +O\left(47^{ 23 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 19 + \left(5 a + 16\right)\cdot 47 + \left(15 a + 20\right)\cdot 47^{2} + \left(4 a + 27\right)\cdot 47^{3} + \left(14 a + 31\right)\cdot 47^{4} + 23 a\cdot 47^{5} + 19\cdot 47^{6} + 5 a\cdot 47^{7} + \left(25 a + 1\right)\cdot 47^{8} + 12\cdot 47^{9} + \left(20 a + 20\right)\cdot 47^{10} + \left(20 a + 8\right)\cdot 47^{11} + \left(a + 46\right)\cdot 47^{12} + \left(38 a + 20\right)\cdot 47^{13} + \left(25 a + 46\right)\cdot 47^{14} + \left(43 a + 20\right)\cdot 47^{15} + \left(20 a + 28\right)\cdot 47^{16} + 25\cdot 47^{17} + \left(32 a + 12\right)\cdot 47^{18} + \left(24 a + 20\right)\cdot 47^{19} + \left(12 a + 33\right)\cdot 47^{20} + \left(4 a + 7\right)\cdot 47^{21} + \left(41 a + 10\right)\cdot 47^{22} +O\left(47^{ 23 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 30 + \left(14 a + 30\right)\cdot 47 + \left(36 a + 33\right)\cdot 47^{2} + \left(15 a + 41\right)\cdot 47^{3} + \left(29 a + 2\right)\cdot 47^{4} + \left(40 a + 15\right)\cdot 47^{5} + \left(42 a + 11\right)\cdot 47^{6} + \left(20 a + 30\right)\cdot 47^{7} + \left(45 a + 39\right)\cdot 47^{8} + \left(19 a + 33\right)\cdot 47^{9} + \left(20 a + 5\right)\cdot 47^{10} + \left(5 a + 22\right)\cdot 47^{11} + \left(44 a + 43\right)\cdot 47^{12} + \left(33 a + 8\right)\cdot 47^{13} + \left(31 a + 44\right)\cdot 47^{14} + \left(16 a + 2\right)\cdot 47^{15} + \left(37 a + 3\right)\cdot 47^{16} + \left(29 a + 14\right)\cdot 47^{17} + \left(32 a + 41\right)\cdot 47^{18} + \left(43 a + 43\right)\cdot 47^{19} + \left(9 a + 17\right)\cdot 47^{20} + \left(44 a + 4\right)\cdot 47^{21} + \left(29 a + 3\right)\cdot 47^{22} +O\left(47^{ 23 }\right)$
$r_{ 7 }$ $=$ $ 39 + 41\cdot 47 + 25\cdot 47^{2} + 23\cdot 47^{3} + 29\cdot 47^{4} + 13\cdot 47^{5} + 44\cdot 47^{6} + 27\cdot 47^{7} + 42\cdot 47^{8} + 10\cdot 47^{9} + 25\cdot 47^{10} + 45\cdot 47^{11} + 28\cdot 47^{12} + 40\cdot 47^{13} + 8\cdot 47^{14} + 3\cdot 47^{15} + 17\cdot 47^{16} + 12\cdot 47^{17} + 3\cdot 47^{18} + 18\cdot 47^{19} + 44\cdot 47^{20} + 20\cdot 47^{21} + 40\cdot 47^{22} +O\left(47^{ 23 }\right)$
$r_{ 8 }$ $=$ $ 33 a + 11 + \left(32 a + 45\right)\cdot 47 + \left(10 a + 44\right)\cdot 47^{2} + \left(31 a + 36\right)\cdot 47^{3} + \left(17 a + 45\right)\cdot 47^{4} + \left(6 a + 19\right)\cdot 47^{5} + \left(4 a + 9\right)\cdot 47^{6} + \left(26 a + 29\right)\cdot 47^{7} + \left(a + 15\right)\cdot 47^{8} + \left(27 a + 28\right)\cdot 47^{9} + \left(26 a + 26\right)\cdot 47^{10} + \left(41 a + 12\right)\cdot 47^{11} + \left(2 a + 32\right)\cdot 47^{12} + \left(13 a + 32\right)\cdot 47^{13} + \left(15 a + 26\right)\cdot 47^{14} + \left(30 a + 4\right)\cdot 47^{15} + \left(9 a + 14\right)\cdot 47^{16} + \left(17 a + 36\right)\cdot 47^{17} + \left(14 a + 29\right)\cdot 47^{18} + \left(3 a + 4\right)\cdot 47^{19} + \left(37 a + 41\right)\cdot 47^{20} + \left(2 a + 35\right)\cdot 47^{21} + \left(17 a + 18\right)\cdot 47^{22} +O\left(47^{ 23 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,4)(5,8,7,6)$
$(3,4)(5,6)$
$(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$4$$2$$(1,8)$$2$
$4$$2$$(1,8)(2,7)(4,5)$$-2$
$6$$2$$(1,8)(3,6)$$0$
$12$$2$$(1,3)(2,4)(5,7)(6,8)$$0$
$12$$2$$(3,4)(5,6)$$-2$
$12$$2$$(1,8)(2,3)(4,5)(6,7)$$2$
$24$$2$$(1,8)(3,4)(5,6)$$0$
$32$$3$$(1,2,3)(6,8,7)$$1$
$12$$4$$(1,6,8,3)(2,5,7,4)$$0$
$12$$4$$(3,4,6,5)$$-2$
$12$$4$$(1,7,8,2)(3,6)(4,5)$$2$
$24$$4$$(1,6,8,3)(2,4)(5,7)$$0$
$24$$4$$(1,8)(3,4,6,5)$$0$
$48$$4$$(1,2,3,4)(5,8,7,6)$$0$
$32$$6$$(1,5,7,8,4,2)$$1$
$32$$6$$(1,2,3)(4,5)(6,8,7)$$-1$
$32$$6$$(1,7,6,8,2,3)(4,5)$$-1$
$48$$8$$(1,5,6,7,8,4,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.