Properties

Label 4.138917e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 138917^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$2680810943141213= 138917^{3} $
Artin number field: Splitting field of $f= x^{5} - 6 x^{3} - 2 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 55 a + 5 + \left(38 a + 32\right)\cdot 61 + \left(22 a + 40\right)\cdot 61^{2} + \left(58 a + 48\right)\cdot 61^{3} + \left(54 a + 42\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 26 + 29\cdot 61 + 10\cdot 61^{2} + 45\cdot 61^{3} + 3\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 34 a + 29 + \left(18 a + 60\right)\cdot 61 + \left(50 a + 37\right)\cdot 61^{2} + \left(56 a + 29\right)\cdot 61^{3} + \left(57 a + 17\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 60 + \left(22 a + 15\right)\cdot 61 + \left(38 a + 24\right)\cdot 61^{2} + \left(2 a + 23\right)\cdot 61^{3} + \left(6 a + 39\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 a + 2 + \left(42 a + 45\right)\cdot 61 + \left(10 a + 8\right)\cdot 61^{2} + \left(4 a + 36\right)\cdot 61^{3} + \left(3 a + 18\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.