Properties

Label 4.13523e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 13523^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$2472971686667= 13523^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} - x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 433 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 32 + 9\cdot 433 + 89\cdot 433^{2} + 300\cdot 433^{3} + 336\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 54 + 84\cdot 433 + 102\cdot 433^{2} + 23\cdot 433^{3} + 408\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 + 308\cdot 433 + 192\cdot 433^{2} + 273\cdot 433^{3} + 122\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 139 + 428\cdot 433 + 401\cdot 433^{2} + 176\cdot 433^{3} + 174\cdot 433^{4} +O\left(433^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 143 + 36\cdot 433 + 80\cdot 433^{2} + 92\cdot 433^{3} + 257\cdot 433^{4} +O\left(433^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.