Properties

Label 4.11e3_4447e3.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 11^{3} \cdot 4447^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$117052163111213= 11^{3} \cdot 4447^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 2 x^{3} - 4 x^{2} + 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.11_4447.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 269 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 34 + 7\cdot 269 + 177\cdot 269^{2} + 96\cdot 269^{3} + 5\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 70 + 54\cdot 269 + 147\cdot 269^{2} + 263\cdot 269^{3} + 182\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 81 + 160\cdot 269 + 117\cdot 269^{2} + 35\cdot 269^{3} + 214\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 143 + 101\cdot 269 + 187\cdot 269^{2} + 7\cdot 269^{3} + 217\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 212 + 214\cdot 269 + 177\cdot 269^{2} + 134\cdot 269^{3} + 187\cdot 269^{4} +O\left(269^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.