Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 16 + 103\cdot 157 + 13\cdot 157^{2} + 151\cdot 157^{3} + 13\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 53 + 6\cdot 157 + 17\cdot 157^{2} + 135\cdot 157^{3} + 45\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 55 + 69\cdot 157 + 73\cdot 157^{2} + 21\cdot 157^{3} + 114\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 64 + 7\cdot 157 + 106\cdot 157^{2} + 21\cdot 157^{3} + 138\cdot 157^{4} +O\left(157^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 126 + 127\cdot 157 + 103\cdot 157^{2} + 141\cdot 157^{3} + 157^{4} +O\left(157^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $10$ | $2$ | $(1,2)$ | $-2$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $20$ | $3$ | $(1,2,3)$ | $1$ |
| $30$ | $4$ | $(1,2,3,4)$ | $0$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.