Properties

Label 4.11e3_2053e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 11^{3} \cdot 2053^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$11517146829287= 11^{3} \cdot 2053^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 103\cdot 157 + 13\cdot 157^{2} + 151\cdot 157^{3} + 13\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 6\cdot 157 + 17\cdot 157^{2} + 135\cdot 157^{3} + 45\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 69\cdot 157 + 73\cdot 157^{2} + 21\cdot 157^{3} + 114\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 7\cdot 157 + 106\cdot 157^{2} + 21\cdot 157^{3} + 138\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 126 + 127\cdot 157 + 103\cdot 157^{2} + 141\cdot 157^{3} + 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.