Properties

Label 4.11e2_881.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 11^{2} \cdot 881 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$106601= 11^{2} \cdot 881 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 8 x^{4} + 34 x^{3} - 225 x^{2} + 328 x - 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.881.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 35 a + 3 + \left(35 a + 26\right)\cdot 37 + \left(24 a + 30\right)\cdot 37^{2} + \left(33 a + 20\right)\cdot 37^{3} + \left(a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 + 24\cdot 37 + 22\cdot 37^{2} + 33\cdot 37^{3} + 3\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 23 + \left(26 a + 2\right)\cdot 37 + \left(19 a + 6\right)\cdot 37^{2} + \left(28 a + 9\right)\cdot 37^{3} + \left(20 a + 6\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 + 22\cdot 37 + 9\cdot 37^{2} + 35\cdot 37^{3} + 6\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 32 + \left(a + 23\right)\cdot 37 + \left(12 a + 20\right)\cdot 37^{2} + \left(3 a + 19\right)\cdot 37^{3} + \left(35 a + 3\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 4 + \left(10 a + 12\right)\cdot 37 + \left(17 a + 21\right)\cdot 37^{2} + \left(8 a + 29\right)\cdot 37^{3} + \left(16 a + 23\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$2$
$6$$2$$(1,2)$$0$
$9$$2$$(1,2)(3,4)$$0$
$4$$3$$(1,2,5)(3,4,6)$$1$
$4$$3$$(3,4,6)$$-2$
$18$$4$$(1,4,2,3)(5,6)$$0$
$12$$6$$(1,3,2,4,5,6)$$-1$
$12$$6$$(1,2)(3,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.