Basic invariants
Dimension: | $4$ |
Group: | $C_3^2:D_4$ |
Conductor: | \(11225\)\(\medspace = 5^{2} \cdot 449 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.2.56125.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $C_3^2:D_4$ |
Parity: | even |
Determinant: | 1.449.2t1.a.a |
Projective image: | $\SOPlus(4,2)$ |
Projective stem field: | Galois closure of 6.2.56125.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{6} - x^{5} + x^{3} - 3x^{2} + 2x - 1 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \)
Roots:
$r_{ 1 }$ | $=$ | \( 10 a + 19 + \left(19 a + 3\right)\cdot 41 + \left(28 a + 6\right)\cdot 41^{2} + \left(4 a + 35\right)\cdot 41^{3} + \left(36 a + 26\right)\cdot 41^{4} +O(41^{5})\) |
$r_{ 2 }$ | $=$ | \( 35 a + 32 + \left(25 a + 6\right)\cdot 41 + \left(30 a + 39\right)\cdot 41^{2} + \left(18 a + 20\right)\cdot 41^{3} + \left(3 a + 14\right)\cdot 41^{4} +O(41^{5})\) |
$r_{ 3 }$ | $=$ | \( 21 + 8\cdot 41 + 23\cdot 41^{2} + 36\cdot 41^{3} + 34\cdot 41^{4} +O(41^{5})\) |
$r_{ 4 }$ | $=$ | \( 30 + 3\cdot 41 + 4\cdot 41^{3} + 33\cdot 41^{4} +O(41^{5})\) |
$r_{ 5 }$ | $=$ | \( 31 a + 8 + \left(21 a + 10\right)\cdot 41 + \left(12 a + 31\right)\cdot 41^{2} + \left(36 a + 20\right)\cdot 41^{3} + \left(4 a + 7\right)\cdot 41^{4} +O(41^{5})\) |
$r_{ 6 }$ | $=$ | \( 6 a + 14 + \left(15 a + 8\right)\cdot 41 + \left(10 a + 23\right)\cdot 41^{2} + \left(22 a + 5\right)\cdot 41^{3} + \left(37 a + 6\right)\cdot 41^{4} +O(41^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $4$ | |
$6$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ | |
$6$ | $2$ | $(3,5)$ | $2$ | |
$9$ | $2$ | $(3,5)(4,6)$ | $0$ | ✓ |
$4$ | $3$ | $(1,3,5)$ | $1$ | |
$4$ | $3$ | $(1,3,5)(2,4,6)$ | $-2$ | |
$18$ | $4$ | $(1,2)(3,6,5,4)$ | $0$ | |
$12$ | $6$ | $(1,4,3,6,5,2)$ | $0$ | |
$12$ | $6$ | $(2,4,6)(3,5)$ | $-1$ |