Basic invariants
Dimension: | $4$ |
Group: | $C_3^2:D_4$ |
Conductor: | \(10525\)\(\medspace = 5^{2} \cdot 421 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.2.52625.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $C_3^2:D_4$ |
Parity: | even |
Determinant: | 1.421.2t1.a.a |
Projective image: | $\SOPlus(4,2)$ |
Projective stem field: | Galois closure of 6.2.52625.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - 2x^{4} - x^{3} + x^{2} + x - 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 14 a + 7 + \left(11 a + 15\right)\cdot 31 + \left(12 a + 28\right)\cdot 31^{2} + \left(17 a + 30\right)\cdot 31^{3} + \left(22 a + 13\right)\cdot 31^{4} +O(31^{5})\)
$r_{ 2 }$ |
$=$ |
\( 7 a + 16 + \left(22 a + 30\right)\cdot 31 + \left(21 a + 5\right)\cdot 31^{2} + \left(a + 24\right)\cdot 31^{3} + \left(13 a + 25\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 3 }$ |
$=$ |
\( 16 + 25\cdot 31 + 28\cdot 31^{2} + 17\cdot 31^{4} +O(31^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 20 + 22\cdot 31 + 22\cdot 31^{2} + 8\cdot 31^{3} + 6\cdot 31^{4} +O(31^{5})\)
| $r_{ 5 }$ |
$=$ |
\( 24 a + 30 + \left(8 a + 5\right)\cdot 31 + \left(9 a + 27\right)\cdot 31^{2} + \left(29 a + 5\right)\cdot 31^{3} + \left(17 a + 19\right)\cdot 31^{4} +O(31^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 17 a + 4 + \left(19 a + 24\right)\cdot 31 + \left(18 a + 10\right)\cdot 31^{2} + \left(13 a + 22\right)\cdot 31^{3} + \left(8 a + 10\right)\cdot 31^{4} +O(31^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $4$ |
$6$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
$6$ | $2$ | $(3,5)$ | $2$ |
$9$ | $2$ | $(3,5)(4,6)$ | $0$ |
$4$ | $3$ | $(1,4,6)$ | $1$ |
$4$ | $3$ | $(1,4,6)(2,3,5)$ | $-2$ |
$18$ | $4$ | $(1,2)(3,6,5,4)$ | $0$ |
$12$ | $6$ | $(1,3,4,5,6,2)$ | $0$ |
$12$ | $6$ | $(1,4,6)(3,5)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.