Properties

Label 35.89e20_365929e20.126.1c1
Dimension 35
Group $S_7$
Conductor $ 89^{20} \cdot 365929^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$1801924995532550093701592158701825142692777974663501544695687444638804801828286395051950724974486238198411889175443731719179657939127486625587404889601= 89^{20} \cdot 365929^{20} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{5} - 2 x^{4} + 10 x^{3} + 3 x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 167 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 167 }$: $ x^{2} + 166 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 94 a + 118 + \left(120 a + 164\right)\cdot 167 + \left(106 a + 53\right)\cdot 167^{2} + \left(10 a + 81\right)\cdot 167^{3} + \left(101 a + 77\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 91 a + 49 + \left(3 a + 39\right)\cdot 167 + \left(103 a + 88\right)\cdot 167^{2} + \left(44 a + 26\right)\cdot 167^{3} + 102 a\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 79 + 4\cdot 167 + 141\cdot 167^{2} + 93\cdot 167^{3} + 147\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 43 + 40\cdot 167 + 154\cdot 167^{2} + 107\cdot 167^{3} + 80\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 27 + 109\cdot 167 + 2\cdot 167^{2} + 71\cdot 167^{3} + 136\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 73 a + 45 + \left(46 a + 24\right)\cdot 167 + \left(60 a + 40\right)\cdot 167^{2} + \left(156 a + 152\right)\cdot 167^{3} + 65 a\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 76 a + 140 + \left(163 a + 118\right)\cdot 167 + \left(63 a + 20\right)\cdot 167^{2} + \left(122 a + 135\right)\cdot 167^{3} + \left(64 a + 57\right)\cdot 167^{4} +O\left(167^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$-1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.