Properties

Label 35.89e15_67231e15.70.1c1
Dimension 35
Group $S_7$
Conductor $ 89^{15} \cdot 67231^{15}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$451225531583577276455455583464836976639627340261042414185935261597586474811862426789951521681630705399= 89^{15} \cdot 67231^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{5} - x^{4} - 3 x^{3} + 2 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd
Determinant: 1.89_67231.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 149 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 149 }$: $ x^{2} + 145 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 105 + \left(97 a + 6\right)\cdot 149 + \left(147 a + 94\right)\cdot 149^{2} + \left(110 a + 44\right)\cdot 149^{3} + \left(14 a + 8\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 104 a + 8 + \left(41 a + 33\right)\cdot 149 + \left(25 a + 78\right)\cdot 149^{2} + \left(98 a + 133\right)\cdot 149^{3} + \left(97 a + 101\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 95 + 30\cdot 149 + 148\cdot 149^{2} + 81\cdot 149^{3} + 57\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 a + 126 + \left(107 a + 95\right)\cdot 149 + \left(123 a + 137\right)\cdot 149^{2} + \left(50 a + 53\right)\cdot 149^{3} + \left(51 a + 96\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 74 + 133\cdot 149 + 118\cdot 149^{2} + 12\cdot 149^{3} + 43\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 140 a + 141 + \left(51 a + 87\right)\cdot 149 + \left(a + 140\right)\cdot 149^{2} + \left(38 a + 42\right)\cdot 149^{3} + \left(134 a + 105\right)\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 47 + 59\cdot 149 + 27\cdot 149^{2} + 77\cdot 149^{3} + 34\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.