Properties

Label 35.830801e20.126.1c1
Dimension 35
Group $S_7$
Conductor $ 830801^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$24543710072317529829488720395860693296251737338501775675718058360349707802529280295264022743833819869647538863138216001= 830801^{20} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + x^{5} + x^{4} - 3 x^{3} + 2 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 77 a + 83 + \left(18 a + 105\right)\cdot 157 + \left(76 a + 108\right)\cdot 157^{2} + \left(13 a + 83\right)\cdot 157^{3} + \left(78 a + 34\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 48 + 137\cdot 157 + 8\cdot 157^{2} + 87\cdot 157^{3} + 72\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 58 + \left(118 a + 35\right)\cdot 157 + \left(105 a + 4\right)\cdot 157^{2} + \left(61 a + 9\right)\cdot 157^{3} + \left(121 a + 20\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 80 a + 154 + \left(138 a + 120\right)\cdot 157 + \left(80 a + 156\right)\cdot 157^{2} + \left(143 a + 74\right)\cdot 157^{3} + \left(78 a + 97\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 91 a + 90 + \left(65 a + 3\right)\cdot 157 + \left(136 a + 130\right)\cdot 157^{2} + \left(75 a + 37\right)\cdot 157^{3} + \left(9 a + 90\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 66 a + 74 + \left(91 a + 83\right)\cdot 157 + \left(20 a + 118\right)\cdot 157^{2} + \left(81 a + 123\right)\cdot 157^{3} + \left(147 a + 61\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 144 a + 123 + \left(38 a + 141\right)\cdot 157 + \left(51 a + 100\right)\cdot 157^{2} + \left(95 a + 54\right)\cdot 157^{3} + \left(35 a + 94\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$-1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.