Properties

Label 35.7e15_17e18_2017e15.70.1
Dimension 35
Group $S_7$
Conductor $ 7^{15} \cdot 17^{18} \cdot 2017^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$2483931747035612263495258984912629859763927895279850056385202352079368159268010867191= 7^{15} \cdot 17^{18} \cdot 2017^{15} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 2 x^{5} + 6 x^{4} - 3 x^{3} - 2 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: $ x^{2} + 190 x + 19 $
Roots:
$r_{ 1 }$ $=$ $ 155 + 112\cdot 191 + 159\cdot 191^{2} + 163\cdot 191^{3} + 65\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 93 + \left(39 a + 139\right)\cdot 191 + \left(44 a + 179\right)\cdot 191^{2} + \left(185 a + 41\right)\cdot 191^{3} + \left(13 a + 140\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 175 + 160\cdot 191 + 180\cdot 191^{2} + 54\cdot 191^{3} + 42\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 158 + 126\cdot 191 + 115\cdot 191^{2} + 133\cdot 191^{3} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 126 + 133\cdot 191 + \left(98 a + 113\right)\cdot 191^{2} + \left(99 a + 92\right)\cdot 191^{3} + \left(112 a + 75\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 184 a + 100 + \left(151 a + 171\right)\cdot 191 + \left(146 a + 184\right)\cdot 191^{2} + \left(5 a + 182\right)\cdot 191^{3} + \left(177 a + 159\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 167 a + 150 + \left(190 a + 109\right)\cdot 191 + \left(92 a + 20\right)\cdot 191^{2} + \left(91 a + 94\right)\cdot 191^{3} + \left(78 a + 88\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.