Properties

Label 35.780401e20.126.1
Dimension 35
Group $S_7$
Conductor $ 780401^{20}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$7020310881599077151953759673103005497531875850245555126721483693463594023835238016100781203767364398426848395566008001= 780401^{20} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 2 x^{5} - x^{4} - 2 x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 199 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 199 }$: $ x^{2} + 193 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 26 + \left(50 a + 166\right)\cdot 199 + \left(88 a + 61\right)\cdot 199^{2} + \left(103 a + 86\right)\cdot 199^{3} + \left(144 a + 67\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 184 a + 116 + \left(148 a + 53\right)\cdot 199 + \left(110 a + 143\right)\cdot 199^{2} + \left(95 a + 21\right)\cdot 199^{3} + \left(54 a + 35\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 183 + 98\cdot 199 + 171\cdot 199^{2} + 109\cdot 199^{3} + 13\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 68 + 138\cdot 199 + 3\cdot 199^{2} + 110\cdot 199^{3} + 102\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 189 a + 14 + \left(6 a + 24\right)\cdot 199 + \left(152 a + 162\right)\cdot 199^{2} + \left(151 a + 74\right)\cdot 199^{3} + \left(186 a + 35\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 153 + \left(192 a + 75\right)\cdot 199 + \left(46 a + 72\right)\cdot 199^{2} + \left(47 a + 37\right)\cdot 199^{3} + \left(12 a + 9\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 + 40\cdot 199 + 181\cdot 199^{2} + 156\cdot 199^{3} + 134\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.