Properties

Label 35.5e15_53e15_89e15_263e15.70.1
Dimension 35
Group $S_7$
Conductor $ 5^{15} \cdot 53^{15} \cdot 89^{15} \cdot 263^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$774237916512408778199419570894817222057431685260250396766185312541574092679558671969887941009521484375= 5^{15} \cdot 53^{15} \cdot 89^{15} \cdot 263^{15} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + x^{5} + 4 x^{4} - 8 x^{3} + x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 337 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 337 }$: $ x^{2} + 332 x + 10 $
Roots:
$r_{ 1 }$ $=$ $ 217 a + 224 + \left(256 a + 128\right)\cdot 337 + \left(161 a + 17\right)\cdot 337^{2} + \left(292 a + 202\right)\cdot 337^{3} + \left(157 a + 241\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 120 a + 298 + \left(80 a + 183\right)\cdot 337 + \left(175 a + 232\right)\cdot 337^{2} + \left(44 a + 154\right)\cdot 337^{3} + \left(179 a + 64\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 279 a + 85 + \left(108 a + 189\right)\cdot 337 + \left(306 a + 130\right)\cdot 337^{2} + \left(126 a + 190\right)\cdot 337^{3} + \left(131 a + 335\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 58 a + 132 + \left(228 a + 117\right)\cdot 337 + \left(30 a + 205\right)\cdot 337^{2} + \left(210 a + 181\right)\cdot 337^{3} + \left(205 a + 191\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 271 + 149\cdot 337 + 169\cdot 337^{2} + 84\cdot 337^{3} + 294\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 256 + \left(265 a + 148\right)\cdot 337 + \left(137 a + 84\right)\cdot 337^{2} + \left(138 a + 327\right)\cdot 337^{3} + \left(50 a + 221\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 304 a + 84 + \left(71 a + 93\right)\cdot 337 + \left(199 a + 171\right)\cdot 337^{2} + \left(198 a + 207\right)\cdot 337^{3} + \left(286 a + 335\right)\cdot 337^{4} +O\left(337^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.