Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 659 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 198 + 23\cdot 659 + 152\cdot 659^{2} + 170\cdot 659^{3} + 92\cdot 659^{4} +O\left(659^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 307 + 109\cdot 659 + 175\cdot 659^{2} + 260\cdot 659^{3} + 652\cdot 659^{4} +O\left(659^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 312 + 7\cdot 659 + 100\cdot 659^{2} + 302\cdot 659^{3} + 90\cdot 659^{4} +O\left(659^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 357 + 397\cdot 659 + 594\cdot 659^{2} + 483\cdot 659^{3} + 535\cdot 659^{4} +O\left(659^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 457 + 9\cdot 659 + 2\cdot 659^{2} + 251\cdot 659^{3} + 433\cdot 659^{4} +O\left(659^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 480 + 621\cdot 659 + 17\cdot 659^{2} + 489\cdot 659^{3} + 569\cdot 659^{4} +O\left(659^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 526 + 148\cdot 659 + 276\cdot 659^{2} + 20\cdot 659^{3} + 262\cdot 659^{4} +O\left(659^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$35$ |
| $21$ |
$2$ |
$(1,2)$ |
$5$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$1$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-1$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$1$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$-1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$1$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$0$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.