Properties

Label 35.5839319e15.70.1
Dimension 35
Group $S_7$
Conductor $ 5839319^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$312919781898505645403312550907772591147848351616891980437052257570291706487475360405226899856991677799= 5839319^{15} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} + 5 x^{4} - 6 x^{3} - 2 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 409 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 409 }$: $ x^{2} + 404 x + 21 $
Roots:
$r_{ 1 }$ $=$ $ 165 a + 307 + \left(114 a + 219\right)\cdot 409 + \left(408 a + 168\right)\cdot 409^{2} + \left(60 a + 384\right)\cdot 409^{3} + \left(327 a + 215\right)\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 244 a + 314 + \left(294 a + 217\right)\cdot 409 + 50\cdot 409^{2} + \left(348 a + 281\right)\cdot 409^{3} + \left(81 a + 154\right)\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 152 a + 191 + \left(382 a + 395\right)\cdot 409 + \left(3 a + 291\right)\cdot 409^{2} + \left(146 a + 7\right)\cdot 409^{3} + \left(10 a + 258\right)\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 167 + 2\cdot 409 + 25\cdot 409^{2} + 280\cdot 409^{3} + 12\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 358 a + 186 + \left(16 a + 277\right)\cdot 409 + \left(280 a + 302\right)\cdot 409^{2} + \left(307 a + 367\right)\cdot 409^{3} + \left(140 a + 12\right)\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 257 a + 133 + \left(26 a + 110\right)\cdot 409 + \left(405 a + 338\right)\cdot 409^{2} + \left(262 a + 324\right)\cdot 409^{3} + \left(398 a + 163\right)\cdot 409^{4} +O\left(409^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 a + 340 + \left(392 a + 3\right)\cdot 409 + \left(128 a + 50\right)\cdot 409^{2} + \left(101 a + 399\right)\cdot 409^{3} + \left(268 a + 408\right)\cdot 409^{4} +O\left(409^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.