Properties

Label 35.5679431e20.126.1c1
Dimension 35
Group $S_7$
Conductor $ 5679431^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$1219260635145447477183492187618984145034302351543135934720850771645723210735121242272462049532609488150507245644466418589548224722949601= 5679431^{20} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 2 x^{5} + 7 x^{4} - 6 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 33 + \left(34 a + 24\right)\cdot 61 + \left(17 a + 40\right)\cdot 61^{2} + \left(33 a + 31\right)\cdot 61^{3} + \left(43 a + 17\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 a + 37 + \left(26 a + 54\right)\cdot 61 + \left(43 a + 23\right)\cdot 61^{2} + \left(27 a + 47\right)\cdot 61^{3} + \left(17 a + 27\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 + 44\cdot 61 + 4\cdot 61^{2} + 45\cdot 61^{3} + 29\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 48 a + 7 + \left(34 a + 28\right)\cdot 61 + \left(55 a + 14\right)\cdot 61^{2} + \left(13 a + 33\right)\cdot 61^{3} + \left(41 a + 33\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 52 a + 39 + \left(a + 2\right)\cdot 61 + \left(14 a + 26\right)\cdot 61^{2} + \left(5 a + 21\right)\cdot 61^{3} + \left(21 a + 29\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 55 + \left(26 a + 14\right)\cdot 61 + \left(5 a + 35\right)\cdot 61^{2} + \left(47 a + 52\right)\cdot 61^{3} + \left(19 a + 60\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 9 a + 30 + \left(59 a + 13\right)\cdot 61 + \left(46 a + 38\right)\cdot 61^{2} + \left(55 a + 12\right)\cdot 61^{3} + \left(39 a + 45\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$-1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.