Properties

Label 35.5663239e15.70.1
Dimension 35
Group $S_7$
Conductor $ 5663239^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$197684833665947161549514488670342570894320756410975071523797215177847680074674607373329404111765420599= 5663239^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} + 3 x^{3} + 3 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 199 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 199 }$: $ x^{2} + 193 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 43 a + 134 + \left(52 a + 128\right)\cdot 199 + \left(5 a + 149\right)\cdot 199^{2} + \left(193 a + 4\right)\cdot 199^{3} + \left(155 a + 97\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 56 + \left(120 a + 85\right)\cdot 199 + \left(42 a + 175\right)\cdot 199^{2} + \left(186 a + 151\right)\cdot 199^{3} + \left(145 a + 94\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 158 + 96\cdot 199 + 71\cdot 199^{2} + 132\cdot 199^{3} + 32\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 156 a + 193 + 146 a\cdot 199 + \left(193 a + 129\right)\cdot 199^{2} + \left(5 a + 162\right)\cdot 199^{3} + \left(43 a + 43\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 172 a + 19 + \left(78 a + 182\right)\cdot 199 + \left(156 a + 111\right)\cdot 199^{2} + \left(12 a + 32\right)\cdot 199^{3} + \left(53 a + 187\right)\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 114 + 196\cdot 199 + 159\cdot 199^{2} + 66\cdot 199^{3} + 105\cdot 199^{4} +O\left(199^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 123 + 105\cdot 199 + 197\cdot 199^{2} + 45\cdot 199^{3} + 36\cdot 199^{4} +O\left(199^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.