Properties

Label 35.563e15_103651e15.70.1c1
Dimension 35
Group $S_7$
Conductor $ 563^{15} \cdot 103651^{15}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$309904847196673239165999347264506632038328456303102158052839049228474139498608010488155655913832833908503867868933257= 563^{15} \cdot 103651^{15} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 5 x^{5} + 9 x^{4} + 5 x^{3} - 7 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even
Determinant: 1.563_103651.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 5 + \left(16 a + 9\right)\cdot 19 + \left(15 a + 15\right)\cdot 19^{3} + 2\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 13 a + 5 + \left(7 a + 11\right)\cdot 19 + \left(13 a + 15\right)\cdot 19^{2} + \left(13 a + 5\right)\cdot 19^{3} + \left(a + 9\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 1 + \left(3 a + 5\right)\cdot 19 + \left(10 a + 4\right)\cdot 19^{2} + \left(18 a + 3\right)\cdot 19^{3} + 8\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 + 3\cdot 19 + 19^{2} + 5\cdot 19^{3} + 3\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 4 + \left(2 a + 8\right)\cdot 19 + \left(18 a + 3\right)\cdot 19^{2} + \left(3 a + 10\right)\cdot 19^{3} + \left(18 a + 7\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 18 + \left(11 a + 5\right)\cdot 19 + \left(5 a + 2\right)\cdot 19^{2} + \left(5 a + 6\right)\cdot 19^{3} + \left(17 a + 16\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 15 + \left(15 a + 13\right)\cdot 19 + \left(8 a + 10\right)\cdot 19^{2} + 11\cdot 19^{3} + \left(18 a + 9\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.