Properties

Label 35.521e20_1609e20.126.1c1
Dimension 35
Group $S_7$
Conductor $ 521^{20} \cdot 1609^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$29368066031588341138073253168019760222313578112036631284578522751469581649048630497578717265428657457963727074542203201= 521^{20} \cdot 1609^{20} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - x^{4} + 3 x^{3} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 257 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 257 }$: $ x^{2} + 251 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 241 a + 232 + \left(229 a + 4\right)\cdot 257 + \left(97 a + 203\right)\cdot 257^{2} + \left(200 a + 15\right)\cdot 257^{3} + \left(113 a + 76\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 252 a + 116 + \left(124 a + 194\right)\cdot 257 + \left(86 a + 130\right)\cdot 257^{2} + \left(214 a + 136\right)\cdot 257^{3} + \left(34 a + 118\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 136 + \left(27 a + 115\right)\cdot 257 + \left(159 a + 46\right)\cdot 257^{2} + \left(56 a + 92\right)\cdot 257^{3} + \left(143 a + 44\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 86 + \left(132 a + 178\right)\cdot 257 + \left(170 a + 10\right)\cdot 257^{2} + \left(42 a + 51\right)\cdot 257^{3} + \left(222 a + 113\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 71 + 162\cdot 257 + 110\cdot 257^{2} + 45\cdot 257^{3} + 35\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 212 a + 200 + \left(155 a + 81\right)\cdot 257 + \left(184 a + 44\right)\cdot 257^{2} + \left(221 a + 156\right)\cdot 257^{3} + \left(176 a + 157\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 45 a + 187 + \left(101 a + 33\right)\cdot 257 + \left(72 a + 225\right)\cdot 257^{2} + \left(35 a + 16\right)\cdot 257^{3} + \left(80 a + 226\right)\cdot 257^{4} +O\left(257^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$-1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.