Properties

Label 35.5044607e15.70.1c1
Dimension 35
Group $S_7$
Conductor $ 5044607^{15}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$34866638006735895159429869363227152503627788246518883649789309002599370212631103699768123153605090943= 5044607^{15} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{6} - 3 x^{5} + 6 x^{4} + x^{3} - 4 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd
Determinant: 1.5044607.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 13 + \left(17 a + 29\right)\cdot 31 + \left(18 a + 1\right)\cdot 31^{2} + \left(8 a + 7\right)\cdot 31^{3} + \left(23 a + 13\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 21 + \left(10 a + 3\right)\cdot 31 + \left(14 a + 18\right)\cdot 31^{2} + \left(16 a + 3\right)\cdot 31^{3} + \left(6 a + 26\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 1 + \left(13 a + 21\right)\cdot 31 + 25\cdot 31^{2} + \left(19 a + 23\right)\cdot 31^{3} + \left(24 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 8 + \left(13 a + 20\right)\cdot 31 + \left(12 a + 21\right)\cdot 31^{2} + \left(22 a + 5\right)\cdot 31^{3} + \left(7 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 6 + \left(17 a + 30\right)\cdot 31 + \left(30 a + 12\right)\cdot 31^{2} + \left(11 a + 30\right)\cdot 31^{3} + \left(6 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 a + 9 + 20 a\cdot 31 + \left(16 a + 5\right)\cdot 31^{2} + \left(14 a + 22\right)\cdot 31^{3} + \left(24 a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 + 19\cdot 31 + 7\cdot 31^{2} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.