Properties

Label 35.5025907e20.126.1c1
Dimension 35
Group $S_7$
Conductor $ 5025907^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$105752090649762443799402372418800864132571838366849009468124695217591582580366942382096588423914430646171539806921204071917538606786001= 5025907^{20} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 4 x^{5} + 3 x^{4} + 3 x^{3} - 3 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 131 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 131 }$: $ x^{2} + 127 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 130 a + 70 + \left(52 a + 110\right)\cdot 131 + \left(83 a + 70\right)\cdot 131^{2} + \left(30 a + 107\right)\cdot 131^{3} + \left(92 a + 23\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 66 + \left(78 a + 61\right)\cdot 131 + \left(47 a + 89\right)\cdot 131^{2} + \left(100 a + 15\right)\cdot 131^{3} + \left(38 a + 100\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 116 a + 7 + \left(114 a + 67\right)\cdot 131 + \left(110 a + 105\right)\cdot 131^{2} + \left(29 a + 36\right)\cdot 131^{3} + \left(6 a + 21\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 78 + \left(16 a + 17\right)\cdot 131 + \left(20 a + 41\right)\cdot 131^{2} + \left(101 a + 45\right)\cdot 131^{3} + \left(124 a + 16\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 113 + 35\cdot 131 + 66\cdot 131^{2} + 86\cdot 131^{3} + 72\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 109 + 76\cdot 131^{2} + 74\cdot 131^{3} + 48\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 82 + 99\cdot 131 + 74\cdot 131^{2} + 26\cdot 131^{3} + 110\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$-1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.