Properties

Label 35.499e15_2131e15.70.1c1
Dimension 35
Group $S_7$
Conductor $ 499^{15} \cdot 2131^{15}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$2513390273384559336865831110128707250689808354302983286307168575013251629880307619878541049= 499^{15} \cdot 2131^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} - x^{3} + x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even
Determinant: 1.499_2131.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 23 + \left(81 a + 79\right)\cdot 127 + \left(124 a + 82\right)\cdot 127^{2} + \left(36 a + 40\right)\cdot 127^{3} + \left(3 a + 57\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 84 a + 56 + \left(5 a + 15\right)\cdot 127 + \left(4 a + 10\right)\cdot 127^{2} + \left(62 a + 24\right)\cdot 127^{3} + \left(45 a + 69\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 118 a + 32 + \left(45 a + 24\right)\cdot 127 + \left(2 a + 126\right)\cdot 127^{2} + \left(90 a + 79\right)\cdot 127^{3} + \left(123 a + 23\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 34 a + 87 + \left(102 a + 3\right)\cdot 127 + \left(15 a + 2\right)\cdot 127^{2} + \left(109 a + 101\right)\cdot 127^{3} + \left(56 a + 45\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 43 a + 13 + \left(121 a + 64\right)\cdot 127 + \left(122 a + 8\right)\cdot 127^{2} + \left(64 a + 82\right)\cdot 127^{3} + \left(81 a + 52\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 93 a + 121 + \left(24 a + 71\right)\cdot 127 + \left(111 a + 42\right)\cdot 127^{2} + \left(17 a + 67\right)\cdot 127^{3} + \left(70 a + 120\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 + 122\cdot 127 + 108\cdot 127^{2} + 112\cdot 127^{3} + 11\cdot 127^{4} +O\left(127^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.