Properties

Label 35.4850543e20.126.1c1
Dimension 35
Group $S_7$
Conductor $ 4850543^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$51976517652378120192314871168772800009779601554899069855666519312025587608245195537897461747636187030923867024891417977740570837064001= 4850543^{20} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + 4 x^{4} - x^{3} - 4 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 41 a + 3 + \left(40 a + 1\right)\cdot 47 + \left(3 a + 14\right)\cdot 47^{2} + \left(18 a + 8\right)\cdot 47^{3} + \left(44 a + 43\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 38 + \left(6 a + 41\right)\cdot 47 + \left(43 a + 27\right)\cdot 47^{2} + \left(28 a + 40\right)\cdot 47^{3} + \left(2 a + 19\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 + 5\cdot 47 + 25\cdot 47^{2} + 2\cdot 47^{3} + 9\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 a + 26 + \left(41 a + 1\right)\cdot 47 + \left(18 a + 19\right)\cdot 47^{2} + \left(15 a + 1\right)\cdot 47^{3} + \left(41 a + 6\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 14 + \left(5 a + 44\right)\cdot 47 + \left(28 a + 14\right)\cdot 47^{2} + \left(31 a + 13\right)\cdot 47^{3} + \left(5 a + 26\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 27 + \left(17 a + 33\right)\cdot 47 + \left(45 a + 6\right)\cdot 47^{2} + \left(10 a + 2\right)\cdot 47^{3} + \left(a + 46\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 39 a + 43 + \left(29 a + 12\right)\cdot 47 + \left(a + 33\right)\cdot 47^{2} + \left(36 a + 25\right)\cdot 47^{3} + \left(45 a + 37\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$-1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.