Properties

Label 35.4582807e15.70.1
Dimension 35
Group $S_7$
Conductor $ 4582807^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$8259875793828834391435621999853262759886047197580782234423904590802946717022046362804768729829867943= 4582807^{15} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{5} - x^{4} - x^{3} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 173 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 173 }$: $ x^{2} + 169 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 72 a + 14 + \left(78 a + 137\right)\cdot 173 + \left(107 a + 96\right)\cdot 173^{2} + \left(60 a + 60\right)\cdot 173^{3} + \left(152 a + 77\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 164 + \left(57 a + 59\right)\cdot 173 + \left(39 a + 170\right)\cdot 173^{2} + \left(149 a + 85\right)\cdot 173^{3} + \left(170 a + 126\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 118 a + 38 + \left(115 a + 61\right)\cdot 173 + \left(133 a + 97\right)\cdot 173^{2} + \left(23 a + 124\right)\cdot 173^{3} + \left(2 a + 141\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 + 13\cdot 173 + 56\cdot 173^{2} + 156\cdot 173^{3} + 59\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 162 + 81\cdot 173 + 157\cdot 173^{2} + 141\cdot 173^{3} + 77\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 140 + 132\cdot 173 + 11\cdot 173^{2} + 100\cdot 173^{3} + 101\cdot 173^{4} +O\left(173^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 101 a + 129 + \left(94 a + 32\right)\cdot 173 + \left(65 a + 102\right)\cdot 173^{2} + \left(112 a + 22\right)\cdot 173^{3} + \left(20 a + 107\right)\cdot 173^{4} +O\left(173^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.