Properties

Label 35.4520279e15.70.1c1
Dimension 35
Group $S_7$
Conductor $ 4520279^{15}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$6721692124623812707800147970045429473929869923509138979528218089170057372173979508026972997327732199= 4520279^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 3 x^{4} - 4 x^{3} - 2 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd
Determinant: 1.4520279.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 131 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 131 }$: $ x^{2} + 127 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 88 a + 47 + \left(126 a + 8\right)\cdot 131 + \left(76 a + 46\right)\cdot 131^{2} + \left(83 a + 40\right)\cdot 131^{3} + \left(77 a + 32\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 10 + \left(52 a + 85\right)\cdot 131 + \left(33 a + 105\right)\cdot 131^{2} + \left(97 a + 125\right)\cdot 131^{3} + \left(2 a + 71\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 a + 6 + \left(4 a + 34\right)\cdot 131 + \left(54 a + 96\right)\cdot 131^{2} + \left(47 a + 35\right)\cdot 131^{3} + \left(53 a + 128\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 + 40\cdot 131 + 92\cdot 131^{2} + 56\cdot 131^{3} + 46\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 50 + 50\cdot 131 + 29\cdot 131^{2} + 110\cdot 131^{3} + 119\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 89 + 15\cdot 131 + 98\cdot 131^{2} + 66\cdot 131^{3} + 8\cdot 131^{4} +O\left(131^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 128 a + 22 + \left(78 a + 28\right)\cdot 131 + \left(97 a + 56\right)\cdot 131^{2} + \left(33 a + 88\right)\cdot 131^{3} + \left(128 a + 116\right)\cdot 131^{4} +O\left(131^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.