Properties

Label 35.41e15_19433e15.70.1c1
Dimension 35
Group $S_7$
Conductor $ 41^{15} \cdot 19433^{15}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$33102104918108718969282774054016910600845289666834711061349293486795693197122002309172657= 41^{15} \cdot 19433^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 2 x^{5} + 2 x^{4} + x^{3} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even
Determinant: 1.41_19433.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 499 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 499 }$: $ x^{2} + 493 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 43 + 161\cdot 499 + 74\cdot 499^{2} + 499^{3} + 296\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 466 + 437\cdot 499 + 496\cdot 499^{2} + 488\cdot 499^{3} + 207\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 134 + 379\cdot 499 + 421\cdot 499^{2} + 15\cdot 499^{3} + 415\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 211 + 87\cdot 499 + 98\cdot 499^{2} + 353\cdot 499^{3} + 355\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 400 a + 481 + \left(324 a + 448\right)\cdot 499 + \left(456 a + 437\right)\cdot 499^{2} + \left(222 a + 270\right)\cdot 499^{3} + \left(449 a + 3\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 99 a + 386 + \left(174 a + 1\right)\cdot 499 + \left(42 a + 358\right)\cdot 499^{2} + \left(276 a + 153\right)\cdot 499^{3} + \left(49 a + 481\right)\cdot 499^{4} +O\left(499^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 276 + 479\cdot 499 + 108\cdot 499^{2} + 213\cdot 499^{3} + 236\cdot 499^{4} +O\left(499^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.