Properties

Label 35.37e20_1120429e20.126.1
Dimension 35
Group $S_7$
Conductor $ 37^{20} \cdot 1120429^{20}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$224761180095556574320403216368472623404780306560611569097817133159952103117446945295464679679819963306074186546019544270998988125961303567339780018099201= 37^{20} \cdot 1120429^{20} $
Artin number field: Splitting field of $f= x^{7} - 8 x^{5} - x^{4} + 19 x^{3} + 5 x^{2} - 12 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: $ x^{2} + 131 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 101 a + 130 + \left(124 a + 82\right)\cdot 137 + \left(103 a + 101\right)\cdot 137^{2} + \left(90 a + 90\right)\cdot 137^{3} + \left(134 a + 47\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 46\cdot 137 + 109\cdot 137^{2} + 101\cdot 137^{3} + 15\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 34 + \left(41 a + 93\right)\cdot 137 + \left(133 a + 91\right)\cdot 137^{2} + \left(4 a + 17\right)\cdot 137^{3} + \left(82 a + 36\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 114 a + 35 + \left(95 a + 43\right)\cdot 137 + \left(3 a + 28\right)\cdot 137^{2} + \left(132 a + 51\right)\cdot 137^{3} + \left(54 a + 112\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 72 + \left(6 a + 112\right)\cdot 137 + \left(88 a + 26\right)\cdot 137^{2} + \left(123 a + 30\right)\cdot 137^{3} + \left(106 a + 6\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 36 a + 51 + \left(12 a + 45\right)\cdot 137 + \left(33 a + 52\right)\cdot 137^{2} + \left(46 a + 120\right)\cdot 137^{3} + \left(2 a + 79\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 112 a + 85 + \left(130 a + 124\right)\cdot 137 + 48 a\cdot 137^{2} + \left(13 a + 136\right)\cdot 137^{3} + \left(30 a + 112\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.