Properties

Label 35.37e15_20357e15.70.1c1
Dimension 35
Group $S_7$
Conductor $ 37^{15} \cdot 20357^{15}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$14247298078168197049948699718275179059761885322977892476348509064795601796743501762272649= 37^{15} \cdot 20357^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 4 x^{4} - 3 x^{3} - x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even
Determinant: 1.37_20357.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 28 a + 45 + \left(27 a + 49\right)\cdot 71 + \left(6 a + 17\right)\cdot 71^{2} + \left(2 a + 56\right)\cdot 71^{3} + \left(6 a + 68\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 21 + \left(14 a + 38\right)\cdot 71 + \left(2 a + 53\right)\cdot 71^{2} + \left(20 a + 22\right)\cdot 71^{3} + \left(68 a + 57\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 47 a + 56 + \left(59 a + 22\right)\cdot 71 + 8 a\cdot 71^{2} + \left(19 a + 34\right)\cdot 71^{3} + \left(14 a + 27\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 60 + \left(56 a + 12\right)\cdot 71 + \left(68 a + 43\right)\cdot 71^{2} + \left(50 a + 60\right)\cdot 71^{3} + \left(2 a + 31\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 43 a + 30 + \left(43 a + 5\right)\cdot 71 + \left(64 a + 3\right)\cdot 71^{2} + \left(68 a + 54\right)\cdot 71^{3} + \left(64 a + 7\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 8 + \left(11 a + 24\right)\cdot 71 + \left(62 a + 29\right)\cdot 71^{2} + \left(51 a + 63\right)\cdot 71^{3} + \left(56 a + 36\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 65 + 59\cdot 71 + 65\cdot 71^{2} + 63\cdot 71^{3} + 53\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$5$
$105$$2$$(1,2)(3,4)(5,6)$$1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$-1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.