Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 16 a + 38 + \left(6 a + 19\right)\cdot 47 + 9 a\cdot 47^{2} + \left(42 a + 2\right)\cdot 47^{3} + \left(7 a + 20\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 + 15\cdot 47 + 17\cdot 47^{2} + 5\cdot 47^{3} + 3\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 24 a + 35 + \left(41 a + 8\right)\cdot 47 + \left(16 a + 32\right)\cdot 47^{2} + \left(23 a + 2\right)\cdot 47^{3} + \left(7 a + 23\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 15 + 3\cdot 47 + 28\cdot 47^{2} + 10\cdot 47^{3} + 22\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 a + 36 + \left(5 a + 20\right)\cdot 47 + \left(30 a + 24\right)\cdot 47^{2} + \left(23 a + 32\right)\cdot 47^{3} + \left(39 a + 14\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 31 a + 23 + \left(40 a + 16\right)\cdot 47 + \left(37 a + 12\right)\cdot 47^{2} + \left(4 a + 30\right)\cdot 47^{3} + \left(39 a + 40\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 19 + 9\cdot 47 + 26\cdot 47^{2} + 10\cdot 47^{3} + 17\cdot 47^{4} +O\left(47^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $35$ |
| $21$ | $2$ | $(1,2)$ | $-5$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $-1$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $70$ | $3$ | $(1,2,3)$ | $-1$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $-1$ |
| $210$ | $4$ | $(1,2,3,4)$ | $1$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $1$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $0$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $-1$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $1$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $-1$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $0$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $0$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.