Properties

Label 35.373e15_106781e15.70.1
Dimension 35
Group $S_7$
Conductor $ 373^{15} \cdot 106781^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$1007029591632275899867642317202020578833897359512298618577371191625307145594322132754998522739814382511894506456257= 373^{15} \cdot 106781^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 5 x^{4} + 13 x^{3} - 5 x^{2} - 6 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 38 + \left(6 a + 19\right)\cdot 47 + 9 a\cdot 47^{2} + \left(42 a + 2\right)\cdot 47^{3} + \left(7 a + 20\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 + 15\cdot 47 + 17\cdot 47^{2} + 5\cdot 47^{3} + 3\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 24 a + 35 + \left(41 a + 8\right)\cdot 47 + \left(16 a + 32\right)\cdot 47^{2} + \left(23 a + 2\right)\cdot 47^{3} + \left(7 a + 23\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 + 3\cdot 47 + 28\cdot 47^{2} + 10\cdot 47^{3} + 22\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 36 + \left(5 a + 20\right)\cdot 47 + \left(30 a + 24\right)\cdot 47^{2} + \left(23 a + 32\right)\cdot 47^{3} + \left(39 a + 14\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 a + 23 + \left(40 a + 16\right)\cdot 47 + \left(37 a + 12\right)\cdot 47^{2} + \left(4 a + 30\right)\cdot 47^{3} + \left(39 a + 40\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 19 + 9\cdot 47 + 26\cdot 47^{2} + 10\cdot 47^{3} + 17\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.