Properties

Label 35.31e20_25447e20.126.1
Dimension 35
Group $S_7$
Conductor $ 31^{20} \cdot 25447^{20}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$8708947506208380000635095909800510499309285384705571763275026913226447172654355431521443472086826526710299949375948001= 31^{20} \cdot 25447^{20} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 3 x^{4} - 2 x^{3} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 41\cdot 67 + 23\cdot 67^{2} + 62\cdot 67^{3} + 65\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 50 + \left(36 a + 8\right)\cdot 67 + \left(4 a + 44\right)\cdot 67^{2} + \left(3 a + 4\right)\cdot 67^{3} + \left(19 a + 36\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 38 + \left(58 a + 44\right)\cdot 67 + \left(2 a + 7\right)\cdot 67^{2} + \left(47 a + 52\right)\cdot 67^{3} + \left(48 a + 10\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 a + 62 + \left(30 a + 15\right)\cdot 67 + \left(62 a + 26\right)\cdot 67^{2} + \left(63 a + 12\right)\cdot 67^{3} + \left(47 a + 42\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 8 + \left(49 a + 41\right)\cdot 67 + \left(16 a + 60\right)\cdot 67^{2} + \left(40 a + 44\right)\cdot 67^{3} + \left(38 a + 20\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 41 a + 8 + \left(8 a + 51\right)\cdot 67 + \left(64 a + 27\right)\cdot 67^{2} + \left(19 a + 36\right)\cdot 67^{3} + \left(18 a + 24\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 27 a + 34 + \left(17 a + 65\right)\cdot 67 + \left(50 a + 10\right)\cdot 67^{2} + \left(26 a + 55\right)\cdot 67^{3} + 28 a\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.