Properties

Label 35.31e20_12377e20.126.1
Dimension 35
Group $S_7$
Conductor $ 31^{20} \cdot 12377^{20}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$4781252675452420335194593693196011126181076568883554628427485469247444806511396711877368038432573067650066040801= 31^{20} \cdot 12377^{20} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{5} - 2 x^{4} + x^{3} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 10 + 60\cdot 73 + 52\cdot 73^{2} + 34\cdot 73^{3} + 70\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 34 + 33\cdot 73 + 71\cdot 73^{2} + 7\cdot 73^{3} + 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 38 a + 66 + \left(63 a + 43\right)\cdot 73 + \left(49 a + 24\right)\cdot 73^{2} + \left(45 a + 60\right)\cdot 73^{3} + \left(54 a + 49\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 53 + 64\cdot 73 + 4\cdot 73^{2} + 73^{3} + 56\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 34 + \left(9 a + 50\right)\cdot 73 + \left(23 a + 37\right)\cdot 73^{2} + \left(27 a + 1\right)\cdot 73^{3} + \left(18 a + 22\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 35 + \left(33 a + 22\right)\cdot 73 + \left(59 a + 14\right)\cdot 73^{2} + \left(53 a + 42\right)\cdot 73^{3} + \left(56 a + 24\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 40 a + 61 + \left(39 a + 16\right)\cdot 73 + \left(13 a + 13\right)\cdot 73^{2} + \left(19 a + 71\right)\cdot 73^{3} + \left(16 a + 67\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.