Properties

Label 35.319831e15.70.1
Dimension 35
Group $S_7$
Conductor $ 319831^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$37480755759729063430207950146014757630067430355916828099146968289169899187067966951= 319831^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} + 2 x^{4} - 3 x^{3} + 4 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 33 a + 28 + \left(10 a + 67\right)\cdot 73 + \left(47 a + 5\right)\cdot 73^{2} + \left(29 a + 43\right)\cdot 73^{3} + \left(28 a + 23\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 + 12\cdot 73 + 24\cdot 73^{2} + 56\cdot 73^{3} + 64\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 64 a + \left(69 a + 38\right)\cdot 73 + \left(18 a + 38\right)\cdot 73^{2} + \left(24 a + 42\right)\cdot 73^{3} + \left(51 a + 63\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 46 + \left(3 a + 37\right)\cdot 73 + \left(54 a + 25\right)\cdot 73^{2} + \left(48 a + 23\right)\cdot 73^{3} + \left(21 a + 47\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 + 8\cdot 73 + 41\cdot 73^{2} + 8\cdot 73^{3} + 69\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 a + 54 + \left(62 a + 65\right)\cdot 73 + \left(25 a + 63\right)\cdot 73^{2} + \left(43 a + 11\right)\cdot 73^{3} + \left(44 a + 6\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 44 + 62\cdot 73 + 19\cdot 73^{2} + 33\cdot 73^{3} + 17\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.