Properties

Label 35.313e20_176713e20.126.1c1
Dimension 35
Group $S_7$
Conductor $ 313^{20} \cdot 176713^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$71821876425022910066932270267062055252988927042904206681518690316429043103992340442032851179720876538737390857341341080833589533706660095339597766640697601= 313^{20} \cdot 176713^{20} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 8 x^{4} + 10 x^{3} - 11 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 311 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 311 }$: $ x^{2} + 310 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 49 a + 59 + \left(122 a + 217\right)\cdot 311 + \left(123 a + 254\right)\cdot 311^{2} + \left(310 a + 253\right)\cdot 311^{3} + \left(29 a + 44\right)\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 262 a + 108 + \left(188 a + 290\right)\cdot 311 + \left(187 a + 255\right)\cdot 311^{2} + 129\cdot 311^{3} + \left(281 a + 75\right)\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 218 a + 271 + \left(261 a + 66\right)\cdot 311 + \left(163 a + 90\right)\cdot 311^{2} + \left(74 a + 82\right)\cdot 311^{3} + \left(17 a + 273\right)\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 34\cdot 311 + 94\cdot 311^{2} + 169\cdot 311^{3} + 85\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 93 a + 178 + \left(49 a + 110\right)\cdot 311 + \left(147 a + 303\right)\cdot 311^{2} + \left(236 a + 303\right)\cdot 311^{3} + \left(293 a + 215\right)\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 261 + 263\cdot 311 + 79\cdot 311^{2} + 169\cdot 311^{3} + 9\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 304 + 260\cdot 311 + 165\cdot 311^{2} + 135\cdot 311^{3} + 228\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$-1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.