Properties

Label 35.2e30_728809e20.126.1c1
Dimension 35
Group $S_7$
Conductor $ 2^{30} \cdot 728809^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$1919439426261220312914218286440228324868907414795364928374450961586229192986209311303696745500624744100332665492519862375809024= 2^{30} \cdot 728809^{20} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 13 x^{3} - x^{2} - 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 191 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 191 }$: $ x^{2} + 190 x + 19 $
Roots:
$r_{ 1 }$ $=$ $ 54 + 53\cdot 191 + 22\cdot 191^{2} + 92\cdot 191^{3} + 174\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 68 a + 138 + \left(180 a + 122\right)\cdot 191 + \left(56 a + 47\right)\cdot 191^{2} + \left(118 a + 154\right)\cdot 191^{3} + \left(60 a + 100\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 123 a + 15 + \left(10 a + 44\right)\cdot 191 + \left(134 a + 115\right)\cdot 191^{2} + \left(72 a + 24\right)\cdot 191^{3} + \left(130 a + 43\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 98 a + 15 + \left(20 a + 35\right)\cdot 191 + \left(153 a + 143\right)\cdot 191^{2} + \left(154 a + 63\right)\cdot 191^{3} + \left(49 a + 161\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 117 + 116\cdot 191 + 101\cdot 191^{2} + 149\cdot 191^{3} + 149\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 122 + 52\cdot 191 + 58\cdot 191^{2} + 23\cdot 191^{3} + 78\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 93 a + 113 + \left(170 a + 148\right)\cdot 191 + \left(37 a + 84\right)\cdot 191^{2} + \left(36 a + 65\right)\cdot 191^{3} + \left(141 a + 56\right)\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$-1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.