Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 48 a + 24 + \left(11 a + 48\right)\cdot 53 + \left(21 a + 6\right)\cdot 53^{2} + \left(17 a + 49\right)\cdot 53^{3} + \left(32 a + 29\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 32 a + 8 + \left(6 a + 52\right)\cdot 53 + \left(12 a + 34\right)\cdot 53^{2} + \left(52 a + 50\right)\cdot 53^{3} + \left(37 a + 25\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 21 a + 30 + \left(46 a + 46\right)\cdot 53 + \left(40 a + 23\right)\cdot 53^{2} + 35\cdot 53^{3} + \left(15 a + 19\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 51 a + \left(52 a + 31\right)\cdot 53 + \left(43 a + 34\right)\cdot 53^{2} + \left(3 a + 22\right)\cdot 53^{3} + \left(2 a + 33\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 2 a + 45 + 32\cdot 53 + \left(9 a + 51\right)\cdot 53^{2} + \left(49 a + 46\right)\cdot 53^{3} + \left(50 a + 37\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 50 + 5\cdot 53 + 33\cdot 53^{2} + 15\cdot 53^{3} + 29\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 5 a + 4 + \left(41 a + 48\right)\cdot 53 + \left(31 a + 26\right)\cdot 53^{2} + \left(35 a + 44\right)\cdot 53^{3} + \left(20 a + 35\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$35$ |
| $21$ |
$2$ |
$(1,2)$ |
$5$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$1$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-1$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$1$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$-1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$-1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$1$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$0$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.