Properties

Label 35.23e20_31e20_5711e20.126.1
Dimension 35
Group $S_7$
Conductor $ 23^{20} \cdot 31^{20} \cdot 5711^{20}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$1570485027509512169853976785874890715055762461893341247380775805660304229007361877478646351962374714305130363038814418250210254860001= 23^{20} \cdot 31^{20} \cdot 5711^{20} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 3 x^{5} + 2 x^{4} + x^{3} + x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 103 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 103 }$: $ x^{2} + 102 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ a + 71 + \left(63 a + 75\right)\cdot 103 + 58 a\cdot 103^{2} + \left(58 a + 68\right)\cdot 103^{3} + \left(97 a + 25\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 65 a + 48 + \left(8 a + 64\right)\cdot 103 + \left(96 a + 77\right)\cdot 103^{2} + \left(73 a + 19\right)\cdot 103^{3} + \left(49 a + 41\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 79 + 54\cdot 103 + 95\cdot 103^{2} + 40\cdot 103^{3} + 96\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 38 a + 10 + \left(94 a + 8\right)\cdot 103 + \left(6 a + 62\right)\cdot 103^{2} + \left(29 a + 100\right)\cdot 103^{3} + \left(53 a + 16\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 83 + 93\cdot 103 + 86\cdot 103^{2} + 41\cdot 103^{3} + 45\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 102 a + 72 + \left(39 a + 34\right)\cdot 103 + \left(44 a + 99\right)\cdot 103^{2} + \left(44 a + 67\right)\cdot 103^{3} + \left(5 a + 64\right)\cdot 103^{4} +O\left(103^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 + 80\cdot 103 + 92\cdot 103^{2} + 72\cdot 103^{3} + 18\cdot 103^{4} +O\left(103^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $-5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $-1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $-1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.