Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 a + 21 + \left(30 a + 17\right)\cdot 31 + \left(12 a + 3\right)\cdot 31^{2} + \left(a + 16\right)\cdot 31^{3} + \left(8 a + 10\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 15 a + 16 + 20 a\cdot 31 + \left(15 a + 26\right)\cdot 31^{2} + \left(20 a + 15\right)\cdot 31^{3} + \left(7 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 27 a + 29 + 11\cdot 31 + \left(18 a + 30\right)\cdot 31^{2} + \left(29 a + 5\right)\cdot 31^{3} + \left(22 a + 25\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 4 + 12\cdot 31 + 27\cdot 31^{2} + 26\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 5 a + 30 a\cdot 31 + \left(16 a + 29\right)\cdot 31^{2} + \left(20 a + 27\right)\cdot 31^{3} + \left(24 a + 14\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 26 a + 10 + 24\cdot 31 + \left(14 a + 1\right)\cdot 31^{2} + \left(10 a + 21\right)\cdot 31^{3} + \left(6 a + 12\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 16 a + 15 + \left(10 a + 26\right)\cdot 31 + \left(15 a + 5\right)\cdot 31^{2} + \left(10 a + 10\right)\cdot 31^{3} + \left(23 a + 11\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$35$ |
| $21$ |
$2$ |
$(1,2)$ |
$-5$ |
| $105$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$-1$ |
| $105$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $70$ |
$3$ |
$(1,2,3)$ |
$-1$ |
| $280$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$-1$ |
| $210$ |
$4$ |
$(1,2,3,4)$ |
$1$ |
| $630$ |
$4$ |
$(1,2,3,4)(5,6)$ |
$1$ |
| $504$ |
$5$ |
$(1,2,3,4,5)$ |
$0$ |
| $210$ |
$6$ |
$(1,2,3)(4,5)(6,7)$ |
$-1$ |
| $420$ |
$6$ |
$(1,2,3)(4,5)$ |
$1$ |
| $840$ |
$6$ |
$(1,2,3,4,5,6)$ |
$-1$ |
| $720$ |
$7$ |
$(1,2,3,4,5,6,7)$ |
$0$ |
| $504$ |
$10$ |
$(1,2,3,4,5)(6,7)$ |
$0$ |
| $420$ |
$12$ |
$(1,2,3,4)(5,6,7)$ |
$1$ |
The blue line marks the conjugacy class containing complex conjugation.