Properties

Label 35.197e15_211e15_1031e15.70.1
Dimension 35
Group $S_7$
Conductor $ 197^{15} \cdot 211^{15} \cdot 1031^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$3020718122854191594300849932140118629323791780456270832700256634160426531869426484389468154005552958493758165060393= 197^{15} \cdot 211^{15} \cdot 1031^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 3 x^{4} + 14 x^{3} + 2 x^{2} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 87 a + 83 + \left(86 a + 66\right)\cdot 101 + \left(3 a + 57\right)\cdot 101^{2} + \left(24 a + 3\right)\cdot 101^{3} + \left(69 a + 11\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 28 + \left(17 a + 78\right)\cdot 101 + \left(34 a + 85\right)\cdot 101^{2} + \left(28 a + 96\right)\cdot 101^{3} + \left(86 a + 32\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 27 + \left(14 a + 24\right)\cdot 101 + \left(97 a + 87\right)\cdot 101^{2} + \left(76 a + 95\right)\cdot 101^{3} + \left(31 a + 61\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 74 a + 35 + \left(83 a + 19\right)\cdot 101 + \left(66 a + 3\right)\cdot 101^{2} + \left(72 a + 75\right)\cdot 101^{3} + \left(14 a + 46\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 + 89\cdot 101 + 55\cdot 101^{2} + 51\cdot 101^{3} + 73\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 71 + 70\cdot 101 + 80\cdot 101^{2} + 67\cdot 101^{3} + 52\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 51 + 55\cdot 101 + 33\cdot 101^{2} + 13\cdot 101^{3} + 24\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.