Properties

Label 35.17e20_172519e20.126.1c1
Dimension 35
Group $S_7$
Conductor $ 17^{20} \cdot 172519^{20}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$2216751799837825826110298660866766751673634414302429733499789938986684167950681526084479366576268145988999120079085511168519767201= 17^{20} \cdot 172519^{20} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 4 x^{3} + 2 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 126
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 181 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 181 }$: $ x^{2} + 177 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 + 156\cdot 181 + 139\cdot 181^{2} + 8\cdot 181^{3} + 138\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 96 a + 173 + \left(125 a + 54\right)\cdot 181 + \left(162 a + 138\right)\cdot 181^{2} + \left(78 a + 16\right)\cdot 181^{3} + \left(165 a + 175\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 90 a + 173 + \left(95 a + 109\right)\cdot 181 + \left(121 a + 179\right)\cdot 181^{2} + \left(77 a + 36\right)\cdot 181^{3} + \left(29 a + 22\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 87 + 168\cdot 181 + 177\cdot 181^{2} + 148\cdot 181^{3} + 59\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 100 + 95\cdot 181 + 121\cdot 181^{2} + 116\cdot 181^{3} + 51\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 85 a + 14 + \left(55 a + 99\right)\cdot 181 + \left(18 a + 120\right)\cdot 181^{2} + \left(102 a + 169\right)\cdot 181^{3} + \left(15 a + 33\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 91 a + 171 + \left(85 a + 39\right)\cdot 181 + \left(59 a + 27\right)\cdot 181^{2} + \left(103 a + 45\right)\cdot 181^{3} + \left(151 a + 62\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$35$
$21$$2$$(1,2)$$-5$
$105$$2$$(1,2)(3,4)(5,6)$$-1$
$105$$2$$(1,2)(3,4)$$-1$
$70$$3$$(1,2,3)$$-1$
$280$$3$$(1,2,3)(4,5,6)$$-1$
$210$$4$$(1,2,3,4)$$1$
$630$$4$$(1,2,3,4)(5,6)$$1$
$504$$5$$(1,2,3,4,5)$$0$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$-1$
$720$$7$$(1,2,3,4,5,6,7)$$0$
$504$$10$$(1,2,3,4,5)(6,7)$$0$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.