Properties

Label 35.17e15_3408001e15.70.1
Dimension 35
Group $S_7$
Conductor $ 17^{15} \cdot 3408001^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$278118272788153440576391509101682160193921803912822848703873782675961558711422594840417908468080312130409259807975793= 17^{15} \cdot 3408001^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 7 x^{5} + 6 x^{4} + 11 x^{3} - 5 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 181 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 181 }$: $ x^{2} + 177 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 149 a + 43 + \left(142 a + 58\right)\cdot 181 + \left(64 a + 90\right)\cdot 181^{2} + \left(49 a + 148\right)\cdot 181^{3} + \left(27 a + 123\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 a + 96 + \left(38 a + 118\right)\cdot 181 + \left(116 a + 25\right)\cdot 181^{2} + \left(131 a + 100\right)\cdot 181^{3} + \left(153 a + 2\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 168 a + 113 + \left(64 a + 45\right)\cdot 181 + \left(176 a + 41\right)\cdot 181^{2} + \left(96 a + 83\right)\cdot 181^{3} + \left(46 a + 151\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 60 a + 101 + \left(91 a + 119\right)\cdot 181 + \left(92 a + 33\right)\cdot 181^{2} + \left(169 a + 166\right)\cdot 181^{3} + \left(157 a + 66\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 151 + 82\cdot 181^{2} + 84\cdot 181^{3} + 152\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 61 + \left(116 a + 137\right)\cdot 181 + \left(4 a + 138\right)\cdot 181^{2} + \left(84 a + 113\right)\cdot 181^{3} + \left(134 a + 59\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 121 a + 160 + \left(89 a + 62\right)\cdot 181 + \left(88 a + 131\right)\cdot 181^{2} + \left(11 a + 27\right)\cdot 181^{3} + \left(23 a + 167\right)\cdot 181^{4} +O\left(181^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.