Properties

Label 35.17e15_23e15_64879e15.70.1
Dimension 35
Group $S_7$
Conductor $ 17^{15} \cdot 23^{15} \cdot 64879^{15}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$35$
Group:$S_7$
Conductor:$1159347343011657019888288788764768075653612272562741619862375047988448582213801308244211903468932991321422369849= 17^{15} \cdot 23^{15} \cdot 64879^{15} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 6 x^{5} + 4 x^{4} + 9 x^{3} - 4 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 70
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 353 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 353 }$: $ x^{2} + 348 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 306 + 81\cdot 353 + 153\cdot 353^{2} + 289\cdot 353^{3} + 13\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 124 a + 13 + \left(4 a + 102\right)\cdot 353 + \left(266 a + 141\right)\cdot 353^{2} + \left(139 a + 292\right)\cdot 353^{3} + \left(10 a + 341\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 318 a + 298 + \left(37 a + 330\right)\cdot 353 + 301\cdot 353^{2} + \left(189 a + 227\right)\cdot 353^{3} + \left(22 a + 271\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 86 + 238\cdot 353 + 103\cdot 353^{2} + 195\cdot 353^{3} + 26\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 229 a + 280 + \left(348 a + 352\right)\cdot 353 + \left(86 a + 54\right)\cdot 353^{2} + \left(213 a + 19\right)\cdot 353^{3} + \left(342 a + 254\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 307 + 103\cdot 353 + 39\cdot 353^{2} + 274\cdot 353^{3} + 308\cdot 353^{4} +O\left(353^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 35 a + 123 + \left(315 a + 202\right)\cdot 353 + \left(352 a + 264\right)\cdot 353^{2} + \left(163 a + 113\right)\cdot 353^{3} + \left(330 a + 195\right)\cdot 353^{4} +O\left(353^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $35$
$21$ $2$ $(1,2)$ $5$
$105$ $2$ $(1,2)(3,4)(5,6)$ $1$
$105$ $2$ $(1,2)(3,4)$ $-1$
$70$ $3$ $(1,2,3)$ $-1$
$280$ $3$ $(1,2,3)(4,5,6)$ $-1$
$210$ $4$ $(1,2,3,4)$ $-1$
$630$ $4$ $(1,2,3,4)(5,6)$ $1$
$504$ $5$ $(1,2,3,4,5)$ $0$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $1$
$720$ $7$ $(1,2,3,4,5,6,7)$ $0$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $0$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.